metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ji-Wei Liu,^a Bin Zhu^b and Seik Weng Ng^c*

^aCollege of Chemistry and Chemical Technology, Daqing Petroleum Institute, Daqing 163318, People's Republic of China, ^bDaqing Equipment Manufacturing Group, Daqing 163312, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.041 wR factor = 0.132 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(3-hydroxybenzoato- κO)bis(1*H*-imidazole- κN^3)-copper(II)

The metal atom in the title compound, $[Cu(C_7H_5O_3)_2(C_3H_4N_2)_2]$, is coordinated by two O atoms (from two carboxylate anions) and two N atoms (from two *N*-heterocycles) in a square-planar geometry; it occupies a special position of site symmetry $\overline{1}$. Above and below the square are the hydroxy O atoms of adjacent molecules. This weak interaction [2.646 (2) Å] leads to the formation of a linear chain; the chains are consolidated into a layer through hydrogen bonds.

Comment

The 1:2 copper(II) bis(3-hydroxybenzoate) adduct with benzimidazole is a dihydrate having monomeric square-planar and dimeric square-pyramidal molecules within the crystal structure (Su & Xu, 2005). The use of the smaller imidazole ligand leads to the formation of the title anhydrous four-coordinate 1:2 adduct, (I). The Cu atom lies on a centre of symmetry. The geometry is distorted from square-planar towards octahedral (Table 1) as a result of the presence of the hydroxy groups of adjacent molecules; these weak interactions lead to the formation of a linear chain (Fig. 1). Adjacent chains are linked (Table 2) into layers by hydrogen bonds.

Experimental

Copper(II) acetate hydrate (4.00 g, 20 mmol), imidazole (1.36 g, 20 mmol) and 3-hydroxybenzoic acid (2.76 g, 20 mmol) were dissolved in water (50 ml). The pH of the solution was adjusted to 7 with 0.2 *M* sodium hydroxide. The solution was filtered; blue single crystals of (I) were isolated after several days.

Crystal data [Cu(C₇H₅O₃)₂(C₃H₄N₂)₂] $M_r = 473.92$ Monoclinic, P_{2_1}/c a = 9.299 (1) Å b = 13.333 (1) Å c = 8.078 (1) Å $\beta = 92.196$ (1)° V = 1000.80 (18) Å³

Z = 2 $D_x = 1.573 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 1.14 \text{ mm}^{-1}$ T = 295 (2) K Block, blue $0.32 \times 0.22 \times 0.13 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved Received 9 November 2006 Accepted 10 November 2006 Data collection

Bruker APEXII area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.712, \ T_{\max} = 0.866$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ wR(F²) = 0.132 S = 1.092281 reflections 150 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.978 (2)	Cu1-O1 ⁱ	1.980 (2)
Cu1-O1	1.980 (2)	$Cu1 \cdots O3^n$	2.646 (2)
$N1-Cu1-N1^{i}$	180	$N1 - Cu1 \cdots O3^{ii}$	88 5 (1)
	100		01.5 (1)
NI-CuI-OI	89.0 (1)	NI-CuI-O3	91.5 (1)
N1-Cu1-O1 ¹	91.1 (1)		
Symmetry codes: (i) $-x + 1, -y + 1, -z + 2.$	-x + 1, -y	+1, -z +1; (ii)	x, y, z - 1; (iii)

6475 measured reflections

 $R_{\rm int}=0.047$

 $\theta_{\rm max} = 27.5^{\circ}$

2281 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0767P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.451P

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.00 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

1859 reflections with $I > 2\sigma(I)$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O3 - H3O \cdot \cdot \cdot O2^{iv}$ N2 - H2N $\cdot \cdot \cdot O1^{v}$	0.85(1) 0.85(1)	1.76(1) 2 01(2)	2.596 (3) 2.841 (3)	170 (4) 166 (4)
Symmetry codes: (iv)	x, y, z + 1; (y) -	$x + 1, y - \frac{1}{2}, -z$	$+\frac{3}{2}$	100 (1)

 $(\mathbf{iv}) x, y$; (v)

The hydroxy and amino H atoms were located in a difference Fourier map, and were refined with a distance restraint of O-H =

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii. Dashed lines indicate the weak interaction between Cu and the hydroxy group. Symmetry codes are given in Table 1.

N-H = 0.85(1) Å; their displacement parameters were freely refined. Other H atoms were positioned geometrically, with C-H =0.93 Å and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; method used to solve structure: Difference Fourier synthesis, with Cu1 at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2006).

The authors thank Daging Petroleum Institute and the University of Malaya for generously supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2004). APEX2 (Version 7.12 A) and SAINT (Version 7.23a). Bruker AXS Inc., Madison, Winsonsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Su, J.-R. & Xu, D.-J. (2005). J. Coord. Chem. 58, 629-636.

Westrip, S. P. (2006). publCIF. In preparation.